Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications

نویسندگان

  • Fei Xiu
  • Hao Lin
  • Ming Fang
  • Guofa Dong
  • Johnny C. Ho
چکیده

In order to make photovoltaics an economically viable energy solution, next-generation solar cells with higher energy conversion efficiencies and lower costs are urgently desired. Among many possible solutions, three-dimensional (3D) silicon nanostructures with excellent light-trapping properties are one of the promising candidates and have recently attracted considerable attention for cost-effective photovoltaic applications. This is because their enhanced light-trapping characteristics and high carrier collection efficiencies can enable the use of cheaper and thinner silicon materials. In this review, recent developments in the controllable fabrication of 3D silicon nanostructures are summarized, followed by the investigation of optical properties on a number of different nanostructures, including nanowires, nanopillars, nanocones, nanopencils, and nanopyramids, etc. Even though nanostructures with radial p-n junction demonstrate excellent photon management properties and enhanced photo-carrier collection efficiencies, the photovoltaic performance of nanostructurebased solar cells is still significantly limited due to the high surface recombination effect, which is induced by high-density surface defects as well as the large surface area in high-aspect-ratio nanostructures. In this regard, various approaches in reducing the surface recombination are discussed and an overall geometrical consideration of both light-trapping and recombination effects to yield the best photovoltaic properties are emphasized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures

Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabric...

متن کامل

Numerical Study of Complementary Nanostructures for Light Trapping in Colloidal Quantum Dot Solar Cells

We have investigated two complementary nanostructures, nanocavity and nanopillar arrays, for light absorption enhancement in depleted heterojunction colloidal quantum dot (CQD) solar cells. A facile complementary fabrication process is demonstrated for patterning these nanostructures over the large area required for light trapping in photovoltaic devices. The simulation results show that both p...

متن کامل

Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices

95 The outstanding light-trapping and electromagnetic-fieldconcentrating properties of surface plasmons open up a wide range of applications in the field of plasmonics1. Localized surface plasmon resonance (LSPR) can occur in properly designed nanostructures in which confined free electrons oscillate with the same frequency as the incident radiation and eventually enter resonance, giving rise t...

متن کامل

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014